Molecular dynamics study on the effect of electric current on electrically-assisted scratching for crystal copper - IOPscience 原因深入分析如下: ✅ 切削 / 摩擦 / 划痕:局部剧烈变形 → 热量集中 这类过程模拟的是工具与材料 接触区域的强烈局部非平衡过程 ; 如果对整个系统控温,会 严重抹平局部发热、滑移带的应变能耗散 等重要现象; 所以 只在边界区域(如底部、侧边)设 thermostat,起到“热沉”作用 ; 文献经典设置就是: 底部固定 ; 边缘 slab 控温 ; 接触区完全不控温,自由演化 。 ✅ 拉伸 / 压缩 / 剪切:全局加载 → 热传导充分 是材料整体在受力,不存在特别“集中”的能量输入区域; 局部发热相对温和,且在 bulk 系统中可以通过自身结构进行导热 ; 实验中常常是等温加载(准静态过程); 所以 很多文献就直接用整体 fix nvt 控温 ,保持恒温环境,简化模拟; 注意有些更精细的研究会改为: 只在两端 slab 控温,中间 Newtonian 自由演化 。 📚 二、典型模拟场景下的控温策略总览 场景类别 控温方式 控温范围 控温方法 控温目的 注意事项 ✅ 平衡态热力学性质 (如热容、扩散、应力) 整体控温 全体系 fix nvt , fix npt 模拟室温等温状态 标准EMD方法 ✅ 热导率(Green-Kubo) 整体控温 全体系 fix nvt (前期平衡), 后期 nve 采集能流自相关函数 采样期不能控温 ✅ 热导率(NEMD) 区域控温 热源/热沉 fix langevin , fix heat 人为施加温差形成热流 中间区自由演化 ✅ 拉伸 / 压缩 / 剪切 整体控温(常用)或局部控温 全体系或上下 slab fix nvt 或 langevin slab 保持恒温,避免非真实升温 全控温可抹平热应变 ✅ 应力松弛 / 加热冷却过程 整体控温 全体系 fix nvt 或温度渐变 等温退火、升温或冷却 控温方式决定退火速率 ✅ 位错运动 / 缺陷扩散 局部控温 边界或部分 slab ...